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Abstract - Psychological stress is threatening people’s health. 
It is non-trivial to detect stress timely for proactive care. With 

the popularity of social media, people are used to share their 

daily activities and interact with friends on social media 

platforms, making it feasible to leverage online social network 

data for stress detection. We find that users stress state is closely 

related to that of his/her friends in social media, and we employ 

a large-scale dataset from real-world social platforms to 

systematically study the correlation of users’ stress states and 

social interactions. We first define a set of stress-related textual, 

visual, and social attributes from various aspects, and then 

proposed a plot .Experimental results show that the proposed 

model can improve the detection performance .With the help of 

enumeration we build a website for the users to identify their 

stress rate level and can check other related activities. 

 

Index Terms—Stress detection, micro-blog, social media, social 

interaction , factor graph model. 

 

I. INTRODUCTION 

Psychological stress is becoming a threat to people’s 

health nowadays. With the rapid pace of life, more and more 

people are feeling stressed. According to a worldwide survey 

reported by Newbusiness in 2010
1
, over half of the population 

have experienced an appreciable rise in stress over the last 

two years. Though stress itself is non-clinical and common in 

our life, excessive and chronic stress can be rather harmful to 

people’s physical and mental health. According to existing 

research works, long-term stress has been found to be related 

to many diseases, e.g., clinical depressions, insomnia etc.. 

Moreover, according to survey, suicide has become the top 

cause of death among Chinese youth, and excessive stress is 

considered to be a major factor of suicide. All these reveal 

that the rapid increase of stress has become a great challenge 

to human health and life quality. Thus, there is significant 

importance to detect stress before it turns into severe 

problems. Traditional psychological stress detection is mainly 

based on face-to face interviews, self-report questionnaires or 

wearable sensors. However, traditional methods are actually 

reactive, which are usually labour-consuming, time-costing 

and hysteretic. 

 

The rise of social media is changing people’s life, as well 

as research in healthcare and wellness 

 
With the development of social networks like Twitter more 

and more people are willing to share their daily events and 

moods, and interact with friends through the social networks. 

As these social media data timely reflect users’ real-life states 

and emotions in a timely manner, it offers new opportunities 

for representing, measuring, modeling, and mining users 

behavior patterns through the large-scale social networks, and 

such social information can find its theoretical basis in 

psychology research. For example, [7] found that stressed 

users are more likely to be socially less active, and more 

recently, there have been research efforts on harnessing social 

media data for developing mental and physical healthcare 

tools. For example, [27] proposed to leverage Twitter data for 

real-time disease surveillance; while [35] tried to bridge the 

vocabulary gaps between health seekers and providers using 

the community generated health data. There are also some 

research works [28] [47] using user tweeting contents on 

social media platforms to detect users’ psychological stress. 
Existing works [28], [47] demonstrated that leverage social 

media for healthcare, and in particular stress detection, is 

feasible. 

 

Limitations in existing system is that stress analysis is a 

crucial tool for designing structurally sound shapes. 

However, the expensive computational cost has hampered its 

use in interactive shape editing tasks.We augment the existing 
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example-based shape editing tools, and propose a fast 

subspace stress analysis method to enable stress-aware shape 

editing. In particular it is constructed by   a reduced stress 

basis from a small set of shape exemplars and possible 

external forces. This stress basis is automatically adapted to 

the current user edited shape on the fly, and thereby offers 

reliable stress estimation. We then introduce a new finite 

element discretization scheme to use the reduced basis for fast 

stress analysis. Some Limitations exist in tweeting content 

based stress detection Firstly, tweets are limited to a 

maximum of 140 characters on social platforms like Twitter 

and users do not always express their stressful states directly 

in tweets. Secondly, users with high psychological stress may 

exhibit low activeness on social networks. These phenomena 

incur the inherent data sparsity and ambiguity problem, which 

may hurt the performance of tweeting content based stress 

detection performance. 

 
1.2 PROPOSED SYSTEM 

Sentiment analysis is to define automatic tools able to 

extract subjective information from texts in natural language, 

such as opinions and sentiments, in order to create structured 

and actionable knowledge to be used by either a decision 

support system or a decision maker.In Social Networks begins 

with an overview of the latest research trends in the field. 

Sentiment analysis has gained even more value with the 

advent and growth of social networking. It explores both 

semantic and machine learning models and methods that 

address context-dependent and dynamic text in online social 

networks, showing how social network streams pose 

numerous challenges due to their large-scale, short, noisy, 

context- dependent and dynamic nature. 

The contributions of this paper are as following: 

 We propose a unified factor graph model in R 

studio to leverage both tweet content attributes 

and social interactions to enhance stress 

detection. 

 We build several stressed-twitter-posting 

datasets by different ground-truth labeling 

methods from several popular social media 

platforms and thoroughly evaluate our proposed 

method on multiple aspects. 

 We carry out in-depth studies on a real-world 

large scale dataset and gain insights on 

correlations between social interactions and 

stress, as well as social structures of stressed 

users. 

2 RELATED WORK 

Psychological stress detection is related to the topics of 

sentiment analysis and emotion detection. 

from users mobile phone activity. Many studies on social 

media based emotion analysis are at the tweet level, using 

text-based linguistic features and classic classification 

approaches. [53] proposed a system called MoodLens to 

perform emotion analysis on the Chinese micro-blog platform 

Weibo, classifying the emotion categories into four types, i.e., 

angry, disgusting, joyful, and sad. [9] studied the emotion 

propagation problem in social networks, and found that anger 

has a stronger correlation among different users than joy, 

indicating that negative emotions could spread more quickly 

and broadly in the network. As stress is mostly considered as 

a negative emotion, this conclusion can help us in combining 

the social influence of users for stress detection. However, 

these work mainly leverage the textual contents in social 

networks. In reality, data in social networks is usually 

composed of sequential and inter-connected items from 

diverse sources and modalities, making it be actually cross- 

media data. 

Research on user-level emotion detection in social 

networks. While tweet-level emotion detection reflects the 

instant emotion expressed in a single tweet, people’s emotion 

or psychological stress states are usually more enduring, 

changing over different time periods. In recent years, 

extensive research starts to focus on user-level emotion 

detection in social networks [29], [36], [38], [50]. Our recent 

work [29] proposed to detect users psychological stress states 

from social media by learning user-level presentation via a 

deep convolution network on sequential tweet series in a 

certain time period. Motivated by the principle of homophily, 

[38] incorporated social relationships to improve user-level 

sentiment analysis in Twitter. Though some userlevel emotion 

detection studies have been done, the role that social 

relationships plays in one’s psychological stress states, and 

how we can incorporate such information into stress 

detection have not been examined yet. 

Research on leveraging social interactions for social 

media analysis. Social interaction is one of the most 

important features of social media platforms. Now many 

researchers are focusing on leveraging social interaction 

information to help improve the effectiveness of social media 

analysis. [12] analyzed the relationships between social 

interactions and users’ thinking and behaviors, and found out 
that Twitter-based interaction can trigger effectual cognitions. 

[49] leveraged comments on Flickr to help predict emotions 

expressed by images posted on Flickr. However, these work 

mainly focused on the content of social interactions, e.g., 

textual comment content, while ignoring the inherent 

structural information like how users are connected. 

 

3 MODEL FRAMEWORK: 

Research on tweet-level emotion detection in social3 Challenges exist in psychological stress detection. 1) How to 

networks. Computer-aided detection, analysis, and 

application of emotion, especially in social networks, have 

drawn much attention in recent years [8], [9], [28], [41], [52], 

[53]. Relationships between psychological stress and 

personality traits can be an interesting issue to consider [11], 

[16], [43]. For example, [1] providing evidence that daily4 
stress can be reliably recognized based on behavioral metrics 

extract users level attributes from user’s tweeting series and 

deal with the problem of absence of modality in the tweets 2) 

How to fully leverage social interaction, including interaction 

content and structure patterns, for stress detection? To tackle 

these challenges, we propose a factor graph model. 
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3.1 Sentiment extraction of tweets sentence extraction 

Fig 3 represents how to review all the datas, that are initially 

collected and how all the sentence are extracted using 

sentiments. After the extraction of sentences part-of-speech 

tagging is done in order to determine the sentences after 

phrase is identified then score has been computed for each 

sentiments with each of polarities has categorized and result 

has been categorized. 

 We proposed a method in which we extracted tweets 

from twitter and categorizes each of the data with 

different sentiments. 

 We can identify the structure of each of the tweets 

and class of each tweets. After classifying all of the 

tweets with each of the sentences it has been 

sentimented. 

 With the help of sentiment extraction it is easy to 

leverage each of the tweets, so that it is easy to 

classify each of the stress rate level. 

 

4 EXPERIMENTS 

i) Dataset collection 
Data collection is the process of gathering and measuring 

information on targeted variables in an established systematic 

fashion, which then enables one to answer relevant questions 

and evaluate outcomes. 

 

ii) Pick the model 
Preparation starts with simple steps, like loading data, but 

quickly gets difficult with cleaning tasks that are very specific 

to the data you are working with. You need help as to where 

to begin and what order to work through the steps from raw 

data to data ready for modeling 

 

KEY FEATURES: 

•  How to load text data and clean it to remove 

punctuation and other non-words. 

•  How to develop a vocabulary, tailor it, and save it to 

file. 

• How to prepare movie reviews using cleaning and a pre- 

defined vocabulary and save them to new files ready for 

modeling 

• The goal for all data collection is to capture quality 

evidence that allows analysis to lead to the formulation of 

convincing and credible answers to the questions that 

have been posed. 

 

iii) Train the model 

Sentiment Analysis (SA) is an ongoing field of research 

in text mining field. SA is the computational treatment of 

opinions, sentiments and subjectivity of text. It tackles a 

comprehensive overview of the last update in this field. 

Many recently proposed algorithms' enhancements and 

various SA applications are investigated and presented 

briefly in this survey. These are categorized according to 

their contributions in the various SA techniques. The 

related fields to SA (transfer learning, emotion detection, 

and building resources) that attracted researchers recently 

are discussed. The main target is to give nearly full 

image of SA techniques and the related fields with brief 

details. 

 
iv) Test the model 

Once you have created a sentiment model and its entries 

you can test it with any of the services that support 

sentiment analysis. The Build action is a way to ensure 

that the most recent version of the model is the one used 

by any of those services. 

 

5 CONCLUSION 

We presented a framework for detecting users 

psychological stress states from users’ weekly social 
media data, leveraging tweets’ content as well as users’ 
social interactions. Employing real-world social media 

data as the basis, we studied the correlation between 

user’ psychological stress states and their social 

interaction behaviors. In this work, we also discovered 

several intriguing phenomena of stress. 

 

6 FUTURE WORK 

The future scope of the project is to develop a system 

that not only detecting the stress and also able to 

analyze people mind means that it will play as a survey 

system. So that it may provide a better solution on 

behalf of people of the society for every debatable 

concepts and also it will indirectly play an important 

role in political, government and also social media. 

So we may efficiently analyze stress and also find 

solution to every social issue by means of polling and 

analyzing comments. 
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